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This talk is NOT about using Al/ML to make forecasting faster !

This talk is about using Al/ML to make the model better !
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Kilometre-scale models are better at predicting clouds.
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Going from a global climate model with dx=100 km to dx=1km
would lead to needing 100*3=1,000,000 more compute.

If we can get some of the benefit for less than that, that is still a massive
WIN!

So not faster as such, perhaps slower even, but faster than what an
Increase in resolution would cost!
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Figure 5. Training and validation curves showing the evolution of mean-squared error (MSE)
as a function of epochs for multi-layver perceptrons with 1 to 5 hidden layers (L) each with 256 or
512 nodes (N). The MSE after 20 epochs appears on each panel.
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Coupling of Python-trained Neural Networks to the Unified Model written in Fortran.

Use the ENNUF frame-work.

Includes sanity check that NN in Fortran reproduces known good output (KGO) from
version in Python.
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Replace the PC2
cloud scheme in
the climate model
with the ML one.
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c) Outgoing longwave (TOA) for ann d) Outgoing longwave (TOA) for ann

U-CP949: GAL8 minus CERES-EBAF Ed4.1 U-DH644: MLCloud UM13.0 GAL8 N96 AMIP S5yr minus CERES-EBAF Ed4.1

Runs stably for
many years.
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a) Outgoing shortwave (TOA) for ann b) Outgoing shortwave (TOA) for ann
U-DH644: MLCloud UM13.0 GALS8 N96 AMIP S5yr U-DH644: MLCloud UM13.0 GAL8 N96 AMIP S5yr minus U-CP949: GALS
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¢) Outgoing shortwave (TOA) for ann d) Outgoing shortwave (TOA) for ann

U-CP949: GAL8 minus CERES-EBAF Ed4.1 U-DH644: MLCloud UM13.0 GAL8 N96 AMIP S5yr minus CERES-EBAF Ed4.1
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We have blazed a path:

from UM convective-scale simulations via
coarse-graining,

normalisation,

NN training & validation and

grafting into the UM

to show that convective-scale information can be machine-learnt
and put back into the global model!

So convective-scale modelling is useful in itself (of course!)...

but it is also useful as a source of high-res data to improve the
coarse model.
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In a world where big-tech can mine ERAS and
produce global weather forecast emulators at
the 25 km scale... and beyond.

Q: What is our unique selling point?

A: The ability to develop/run/improve
physics-based kilometre-scale models with
better clouds/rain/extremes either to use in
themselves or as a source of data for training
the next generation of emulators.
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